If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-20Y^2+320Y-780
We move all terms to the left:
-(-20Y^2+320Y-780)=0
We get rid of parentheses
20Y^2-320Y+780=0
a = 20; b = -320; c = +780;
Δ = b2-4ac
Δ = -3202-4·20·780
Δ = 40000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{40000}=200$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-320)-200}{2*20}=\frac{120}{40} =3 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-320)+200}{2*20}=\frac{520}{40} =13 $
| 10-5(5x-4)=-5 | | 2/5x-1/3×=4 | | 7(x)=0.81x+168.3 | | y2+6y+9=0 | | x/5+10=39 | | 7x+19=8×7 | | x3−48x+6=0 | | y2-6y+9=0 | | 3x-6+6x=3(5x-5)+6 | | 13+3x=105 | | 6−(x−11)=3(x+2) | | 3x+13=105 | | 9/16-3/8t=-9/16 | | 7x+4=3x-18 | | 9x+1=9(x-2) | | 7(x-2)+4=3x+4(-3+x) | | 5/7(y)=15 | | 4x^2+16x+64=84 | | -12+2x=3(18x+25)+x | | -4(x+2)=-44 | | 2n/3+3n/5=9n/15+40 | | 11.75a=185.20 | | 6n=4/5 | | 12/4+2=x | | 7/5x-1/10=1/5 | | 51*x-427=185 | | 3x+19=7x+23 | | 3/5x+9=3 | | 5/3x-1/6=1/3 | | 1x+16+1x=90 | | 1x+16+1x=180 | | 1x+16+1x=189 |